مقایسه عملکرد ماشین بردار پشتیبان با سایر مدل های هوشمند در شبیه سازی فرآیند بارش- رواناب
Authors
abstract
شبیهسازی فرآیند بارش- رواناب به عنوان مهمترین گام در مطالعات مهندسی آب و مدیریت منابع آب است. در این تحقیق فرآیند بارش- رواناب ماهانه سیمینهرود در دوره آماری (1390-1377) با استفاده از مدلهای ماشین بردار پشتیبان با توابع کرنل پایه شعاعی، چندجملهای و خطی، مدل شبکه بیزی با الگوریتم یادگیری pc و نیز مدلهای متداول شبکه عصبی مصنوعی و برنامهریزی بیان ژن شبیهسازی شده و نتایج آنها مورد مقایسه قرار گرفته است. از پارامترهای ضریب همبستگی، ریشه میانگین مربعات خطا و ضریب نشساتکلیف برای ارزیابی صحت مدلها استفاده گردید. نتایج گویای عملکرد قابل قبول هر چهار مدل و برتری مدل برنامهریزی بیان ژن با بیشترین ضریب همبستگی (91/0cc=)، کمترین ریشه میانگین مربعات خطا (m3/s 1/3rmse=) و مقدار ضریب نشساتکلیف 82/0ns= در مرحله صحتسنجی است.
similar resources
مقایسه عملکرد ماشین بردار پشتیبان با سایر مدلهای هوشمند در شبیهسازی فرآیند بارش- رواناب
Simulation of rainfall-runoff process is a major step in water engineering studies and water resources management. In this study, the rainfall-runoff process of the Siminehroud monthly (1377-1390) were simulated using Support Vector Machines (SVM) with Radial Basis kernel Function, Polynomial and linear Bayesian Network (BN) with a PC Learning Algorithm, also conventional methods such as ...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textشبیه سازی فرآیند بارش- رواناب در حوضه آبریز قره سو با استفاده از مدل WMS
برآورد رواناب حاصل از بارشهای جوی اهمیت خاصی در مطالعات هیدرولوژی، مدیریت حوضههای آبخیز و حفاظت آب و خاک دارد. استفاده از مدلهای شبیهساز بارش- رواناب همانند WMS در سالهای اخیر گسترش فراوانی یافته است. این مدل با تلفیق امکانات GIS و مدلهای هیدرولوژیکی رایج به ابزاری قدرتمند برای شبیهسازی فرآیندهای هیدرولوژیکی حوضههای آبخیز تبدیل شده است. در این مطالعه برای پیش بینی سیلاب حاصل از بارش حوض...
full textکاهش خطای شبیه سازی فرآیند بارش-رواناب با بکارگیری تکنیک داده گواری در مدل هیدرولوژیکی SWAT
مدلسازی فرآیند بارش-رواناب با انبوهی از پارامترها و داده های اقلیمی همراه است که ارائه یک مدل شبیه ساز مناسب با حداقل خطا از چالش های مطالعات گذشته بوده است. عدم اطمینان و قطعیت بر صحت داده ها و پارامترهای ورودی مدل های شبیه سازی منجر به تولید خطا می شود که تاثیر قابل توجهی بر پیش بینی های بلند مدت و سیاست های مدیریتی می گذارد. در این مطالعه از مدل مفهومی آب و خاک SWAT به منظور شبیه سازی فرآیند...
full textپیشبینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)
مدلهای داده محور از جمله ابزارهایی هستند که به منظور شبیهسازی در علوم مختلف استفاده میشوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدلها با شبیهسازی فرآیند بارش-رواناب، مقدار رواناب را در حوزههای آبخیز بدون ایستگاه اندازهگیری و با حداقل زمان ممکن و کمترین هزینه برآورد میکنند. هدف ا...
full textشبیه سازی نوسانات سطح آب زیرزمینی با استفاده از ترکیب ماشین بردار پشتیبان و تبدیل موجک
امروزه در بسیاری از کشورهای جهان، به ویژه در مناطقی که با کمبود آبهای سطحی مواجه هستند، بهرهبرداری از منابع آب زیرزمینی بیش از پیش مورد توجه قرار گرفته است. بهرهبرداری بیرویه از این منابع، بدون بهرهگیری از مطالعات منابع آب زیرزمینی میتواند مشکلات و پیامدهای جبرانناپذیری را بهبار آورد. مدیریت صحیح این منابع با شناخت کامل و آگاهی از این منابع امکانپذیر است. در این تحقیق از مدل ماشین بردا...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهشنامه مدیریت حوزه آبخیزجلد ۷، شماره ۱۳، صفحات ۱۰۳-۹۲
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023